Increased enzymatic hydrolysis of sugarcane bagasse from enzyme recycling
نویسندگان
چکیده
BACKGROUND Development of efficient methods for production of renewable fuels from lignocellulosic biomass is necessary to maximize yields and reduce operating costs. One of the main challenges to industrial application of the lignocellulosic conversion process is the high costs of cellulolytic enzymes. Recycling of enzymes may present a potential solution to alleviate this problem. In the present study enzymes associated with the insoluble fraction were recycled after enzymatic hydrolysis of pretreated sugarcane bagasse, utilizing different processing conditions, enzyme loadings, and solid loadings. RESULTS It was found that the enzyme blend from Chrysoporthe cubensis and Penicillium pinophilum was efficient for enzymatic hydrolysis and that a significant portion of enzyme activity could be recovered upon recycling of the insoluble fraction. Enzyme productivity values (g glucose/mg enzyme protein) over all recycle periods were 2.4 and 3.7 for application of 15 and 30 FPU/g of glucan, representing an increase in excess of ten times that obtained in a batch process with the same enzyme blend and an even greater increase compared to commercial cellulase enzymes. CONCLUSIONS Contrary to what may be expected, increasing lignin concentrations throughout the recycle period did not negatively influence hydrolysis efficiency, but conversion efficiencies continuously improved. Recycling of the entire insoluble solids fraction was sufficient for recycling of adhered enzymes together with biomass, indicative of an effective method to increase enzyme productivity.
منابع مشابه
Comparative hydrolysis and fermentation of sugarcane and agave bagasse.
Sugarcane and agave bagasse samples were hydrolyzed with either mineral acids (HCl), commercial glucanases or a combined treatment consisting of alkaline delignification followed by enzymatic hydrolysis. Acid hydrolysis of sugar cane bagasse yielded a higher level of reducing sugars (37.21% for depithed bagasse and 35.37% for pith bagasse), when compared to metzal or metzontete (agave pinecone ...
متن کاملComparative study on chemical pretreatment (acid and ozone) methods for improving enzymatic digestibility of sugar cane bagasse
Sugarcane bagasse contains cellulose, lignin and hemicellulose, 39-42%, 20-25% and 25-27% respectively. So it is can be used as a sugar source in many processes. Lignin and hemicellulose must be removed before hydrolysis of cellulose. Several different pretreatment approaches have been studied. The purpose of this research is comparison of acid, ozone and combination of ozone-acid as pretreatme...
متن کاملComparative study on chemical pretreatment (acid and ozone) methods for improving enzymatic digestibility of sugar cane bagasse
Sugarcane bagasse contains cellulose, lignin and hemicellulose, 39-42%, 20-25% and 25-27% respectively. So it is can be used as a sugar source in many processes. Lignin and hemicellulose must be removed before hydrolysis of cellulose. Several different pretreatment approaches have been studied. The purpose of this research is comparison of acid, ozone and combination of ozone-acid as pretreatme...
متن کاملMonosaccharides and Ethanol Production from Superfine Ground Sugarcane Bagasse Using Enzyme Cocktail
In this work, the effect of particle size on the enzymatic hydrolysis of milled and sieved sugarcane bagasse (SCB) was studied. The enzymatic hydrolysis and fermentability of superfine ground SCB (SGP400) using an enzyme cocktail strategy were also explored. Particle size reduction improved the enzymatic hydrolysis. The highest glucose yield was 44.75%, which was obtained from SGP400. The enzym...
متن کاملComparative study on chemical pretreatment (acid and ozone) methods for improving enzymatic digestibility of sugar cane bagasse
Sugarcane bagasse contains cellulose, lignin and hemicellulose, 39-42%, 20-25% and 25-27% respectively. So it is can be used as a sugar source in many processes. Lignin and hemicellulose must be removed before hydrolysis of cellulose. Several different pretreatment approaches have been studied. The purpose of this research is comparison of acid, ozone and combination of ozone-acid as pretreatme...
متن کامل